Agenda

- Welcome
 - Number of participants, background, etc..
- Goal, Frequency
 - Similar to an academic lab.
 - Read and discuss papers, share resources
 - Network and collaborate
- Papers, presenter
 - Presenter every week, either to present or lead the discussion
 - Flexibility as long as it is related to 3D (neural fields, explicit representations, vision, robotics, ..)

- Format
 - Very informal, slides or summary are preferred but not required.
 - Clear the following: Prerequisites What Why How
- Conferences CVPR?

Yiheng Xie^{1,2} Towaki Takikawa^{3,4} Shunsuke Saito⁵ Or Litany⁴ Shiqin Yan¹ Numair Khan¹ Federico Tombari^{6,7} James Tompkin¹ Vincent Sitzmann^{8†} Srinath Sridhar^{1†}

¹Brown University ²Unity Technologies ³University of Toronto ⁴NVIDIA ⁵Meta Reality Labs Research ⁶Google ⁷Technical University of Munich ⁸Massachusetts Institute of Technology [†]Equal advising

Prerequisites

- Fundamental of Deep Learning and optimisation
- Encoder Decoder architectures
- Knowledge of explicit representations (point cloud, mesh, etc..)

What

- Describe neural fields techniques with consistent notation
- Describe neural fields applications

Example: NeRF!

Why

- No standard terminology
- "Selective amnesia" a.k.a research repetition
- Provide an overview of the state of the field

Definitions

• A field is a quantity defined for all spatial and/or temporal coordinates.

• A neural field is a field that is parametrised by a neural network.

Typical pipeline

Figure 3: A typical feed-forward neural field algorithm. Spatiotemporal coordinates are fed into a neural network which predicts values in the reconstruct a domain. Then, this domain is mapped to the sensor domain where sensor measurements are available as supervision.

Classes of techniques

Class and Section	Problems Addressed
Prior Learning and Conditioning (Section 2) Hybrid Representations (Section 3)	Inverse problems, ill-posed problems, edit ability, symmetries. Computation & memory efficiency, representation capacity, edit ability.
Forward Maps (Section 4)	Inverse problems.
Network Architecture (Section 5)	Spectral bias, integration and derivatives.
Manipulating Neural Fields (Section 6)	Edit ability, constraints, regularization.

Prior learning and conditioning

• Example: 3D shape reconstruction using partial point clouds

DeepSDF

Chabra, Rohan, et al. "Deep local shapes: Learning local sdf priors for detailed 3d reconstruction."

DeepSDF

Hybrid representations

- Decompose spatial domain and store neural fields parameters in a data structure g. Given a coordinate, query g to retrieve the corresponding neural field.
- Local shape embedding?

Li, Kejie, et al. "Bnv-fusion: dense 3D reconstruction using bi-level neural volume fusion."

Forward maps

Neural field TO sensor domain

- Rendering (3D to image)
- PINN (Eikonal equaiton?)

Network architecture

Neural networks are biased to fit function with low frequency

Network architecture

- Solutions:
 - Positional encoding
 - Activation functions (SIREN)

